Category Archives: Dragon Trainer

Debugging democracy: riprogettare la partecipazione con la network analysis

Qualche settimana fa ho presentato al TEDx Bologna. Ne ho approfittato per provare a mettere insieme i pezzi del mio percorso degli ultimi cinque-sei anni per vedere se ne usciva qualcosa di coerente.

Quello che è uscito è il video qui sopra. Detto in pillole: l’intelligenza collettiva è l’arma migliore che abbiamo per affrontare i molti e gravi problemi che minacciano la nostra specie, e che trascendono la scala individuale. Riscaldamento globale, finanza fuori controllo, disuguaglianze in aumento; non possiamo toccare questi fenomeni, perché non esistono alla stessa scala a cui esistiamo noi, ma a una superiore – un po’ come i neuroni non possono capire, né tantomeno governare, il cervello. Purtroppo la democrazia rappresentativa è congegnata in un modo che non consente l’emergere di soluzioni collettive all’interno delle istituzioni democratiche (nel senso in cui Wikipedia è una soluzione collettiva al problema di scrivere e tenere aggiornata un’enciclopedia). La democrazia partecipativa in teoria potrebbe portare a queste soluzioni, ma non scala. Per farla scalare possiamo usare Internet. Prima progettiamo ambienti di interazione online per sviluppare soluzioni collettive; poi misuriamo le dinamiche sociali che questi ambienti ospitano e favoriscono, come barriere coralline colonizzate da molte specie. Ho scritto misurare, perché, grazie all’analisi di rete, le dinamiche di interazione sociale si possono misurare, anche per comunità piuttosto grandi.

Forse, usando queste tecniche, potremo finalmente realizzare il sogno di una democrazia partecipativa che funziona su scala grande. Dopo venticinque secoli! Sicuramente vale la pena di provarci.A few weeks ago I presented at TEDx Bologna. I used the opportunity to try and stitch together the pieces of my intellectual journey of the past five-six years, and see if they form some coherent pattern.

The result was the video above. In a nutshell: collective intelligence is the most promising weapon we have to face the many dire problems threatening our species, and that transcend the individual scale. Climate change, feral finance, mounting inequalities; we can’t touch these (and others), because they don’t exist at the same scale as us – they emerge from the interaction of billions of us. To address these problems, it seems intuitive that we should deploy an equally emergent, same-level collective intelligence. Unfortunately, representative democracy is concocted in such a way that does not allow the emergence of solutions (in the sense that Wikipedia is an emergent solution to the problem of writing an encyclopedia) within democratic institutions. Participatory democracy could, in theory, lead to such a result, but it does not scale. To make it scale we can use the Internet. First, we design online interaction environments from which we think collective solutions might emerge; then we measure the social dynamics the these environments host and foster, as if they were coral reefs colonized by many species. I wrote “measure” because, thanks to network analysis, social interaction dynamics have become measurable, even for large communities.

Maybe, using these techniques, we’ll finally be able to make the dream of a working, large-scale participatory democracy come true. We have held on to it for twenty-five centuries! It’s certainly worth trying.

Walking the wire: network science, online communities and democracy

Last Saturday I took part in TEDx Bologna. Rather than play safe talking about the topics I developed in my book Wikicrazia, I talked about a connection that I am still exploring, and find absolutely fascinating. I am wondering whether we can:

  1. using network science to herd the social dynamics in open online communities (how?). Get them to look at issues care about; and to accept certain rules of mutual engagement, like basing your argument on evidence. Can we use online communities as tools for analysis and solution design to collective problems, as if they were computers composed of people?
  2. embed these online communities in a framework of democratic legitimacy, using them as open spaces for citizens to participate in taking apart societal problems and designing solutions. Legitimacy here means that such communities must be participated, and so somehow led, by democratically elected institutions.

Participants to these communities sign off to a deal: they accept interaction to be directed, rather than totally free (for example, these places are not the right ones to post pictures of cats). In exchange, they get to participate in a discussion which is close to, and participated by, public decision makers. So, such communities can make credible promises – carefully ringfenced and realistic – of the kind: “the gift of your time and effort will be reciprocated with influence on the decision we make in the name of the people and in the common interest”.

I realize this is a long shot: from network science to participatory democracy, through online communities. I hope my aim is true. The talk’s video will take about a month to get through post-production. The image below is just an appetizer.

Is your online community sustainable? A network science approach

The latest years have seen an unmistakable drive towards government agencies, local and regional authorities and public institutions in general to spawn online communities. For many reasons (desire to harness collective intelligence online; need for legitimacy through open participation; top-down policy drive for modernization) they come, and will probably keep coming. This, however, raises the issue of funding. How much do public-sector funded online communities really cost? How do their running costs evolve over time? Some commentators think that citizen engagement online is very cheap to maintain – after all, citizen engagement is the civic equivalent of user generated content, and user generated content is made by users, for free. There can be significant costs to get one going, associated to purchasing and deploying technology and investing in its startup, but then one can relax, sit back and enjoy the flight.

My experience, and that of numerous colleagues, is that this is largely a myth. It is probably true for very large communities, in which even a tiny share of active users can drive a lot of activity because even a a tiny minority is still a lot of people in absolute numbers. But the communities typically spawned by government authorities are generally small: less than a thousand for mobility in Milano, a few thousands for peer-to-peer collaboration on business plans for the creative industries in Italy, maybe a few tens of thousands somewhere else – forget it. I learned this the hard way, as administrative uncertainty almost crashed the previously buzzing community of Kublai.

But, if public policy-oriented online communities are not 100% self-sustaining, many do display some degree of sustainability – and therefore, all other things being equal, of cost advantages. This was certainly true of Kublai: almost three years of administrative uncertainty and false starts have undermined it, but not killed it. The community was still showing signs of vitality in July 2012, when the new team finally was hired. So, how can we measure the degree of sustainability?

An intuitive way to do it is to look at user generated content vs. content created by paid staff. It works like this: even if you have the best technology and the best design in the world, a social website is by definition useless if no one uses it. The result is that nobody wants to be the first to enter a newly launched online community. Catherina Fake, CEO of the photo sharing website Flickr, found a clever workaround: she asked her employees to use the site after they had built it. In this way, the first “real” users that wandered in found a website already populated with people who were passionate about photography – they were also paid employees of the company, but this might not have been obvious to the casual surfer. So the newcomers stayed in and enjoyed it, making the website even more attractive for other newcomers, kickstarting a virtuous cycle. With more than 50 million registerered users, now Flickr presumably does not need its employees to stand in as users any more.

Let me share with you some data from Edgeryders. This project, just like many others, employs a small team of animators to prime the pump of the online conversation. Think of it as a blogging community with writing assignments: people participate by writing essays on the proposed topics, and by commenting one another’s submission. At the time I took the measurement (July 19th 2012) there were 478 posts with 3,395 comments in the Edgeryders database. The community had produced a vast majority of the posts – 80% exactly – and a much smaller majority of the comments – 55%. Over time, the community evolved much as one would expect: the role of the paid team in generating the platform’s content is much stronger at the beginning, and then it declines over time as the community gets up to speed. So, the share of community-generated content over the total is clearly increasing (see the chart above). Activity indicators in absolute terms have also increased quite fast until June, then dropped in July as a part of a (planned) break while the research team digests results. In this perspective, the Edgeryders community seems to display signs of being at least partly sustainable, and of its sustainability increasing. However, I would like to suggest a different point of view.

When talking about the sustainability of an online community, a relevant question is: what is it that is being sustained? In a community like Edgeryders (and, I would argue, in many others that are policy-oriented) it is conversation. The content being uploaded on the platform is not a gift from the heavens; rather it is both a result of an ongoing dialogue among participants and its driver. As long as the dialog keeps going, it keeps appearing in the form of new content. So, a better way to look at sustainability is by looking at the conversation as a network and asking what would happen to that conversation if the team were removed from it.

We can address this question precisely in a quantitative way with network analysis. My team and I have extracted network data from the Edgeryders database. The conversation network is specified as follows:

  • users are modeled as nodes in the network
  • comments are modeled as edges in the network
  • an edge from Alice to Bob is created every time Alice comments a post or a comment by Bob
  • edges are weighted: if Alice writes 3 comments to Bob’s content an edge of weight 3 is created connecting Alice to Bob

Thus specified, the Edgeryders network in mid-July 2012 consists of 3,395 comments, and looks like this:

Colors represent connectiveness: the redder nodes are more connected (higher degree). What would happen to the conversation if we suddenly removed the contribution of the Edgeryders team? This:

I call this representation of an online community its induced conversation. It selects only the interactions that do not involve the members of the team – and yet it is induced in the sense that these interactions would not have happened at all if the community managers had not created a context for them to take place in.

Even from simple visual inspection, it seems clear that the paid team plays a large role in the Edgeryders conversation. Once you drop the nine people that, at various stages, received a compensation to animate the community all indicators of network cohesion drop. An intuitive way to look at what is happening is:

  • the average active participant in the full Edgeryders network interacts directly with 6.5 other people (this means she either comments or receives comments from 6.5 other members on average). The intensity of the average interaction is a little over 2 (this means that, on average, people on Edgeryders exchange two comments with each person they interact with). Dropping the team members, the average number of interactants per participant drops to 2.4, and the average intensity of interactions to just above 1.5. Though most active participants are involved in the induced conversation, for many of them the team members are an important part of what fuels the social interactions. Dropping them is likely to change significantly the experience of Edgeryders, from a lively conversation to a community where one has the feeling she does not know anyone anymore.
  • more than three quarters of active participants do interact with other community members. However, only a little more than one third of the interactions happens between non-team community members, and do not involve the team at all. Notice how these shares are lower than the shares of community generated vs. team generated content.
  • 49 out of 219 non-team active members are “active singletons”: they do contribute to user-generated content, but they only interact with the Edgeryders team. Removing the latter means disconnecting these members from the conversation. There is probably a life-cycle effect at work here: new members are first engaged by the team, which then tries to introduce the newcomers to others with similar interest. This is definitely what we try to do in Edgeryders, and I have every intention to use longitudinal data to explore the life-cycle hypothesis at some later stage.
  • the average distance from two members is 2.296 in the full network, but increases to 3.560 when we drop the team. The team plays an important role in facilitating the propagation of information across the network, by shaving off more than one degree of separation on average.

From an induced conversation perspective, it seems unlikely that the Edgeryders community could be self-sustaining. The willingness of its members to contribute content lies at least in part on the role played by its team in sustaining the conversation, making the experience of participating in Edgeryders much more rewarding even in the presence of a small number of active users.

That said, it seems that the community has been moving towards a higher degree of sustainability. If we look at the share of the Egderyders active participants that take part in the induced conversation, as well as the share of all interactions that constitute the induced conversation itself, we find clear upward trends:

Based on the above, I would argue that these data can be very helpful in making management decisions that concern sustainability. If you find yourself in a situation like that of Edgeryders in July and you run out of funding, for example, my recommendation would be to “quit while you are ahead”: shut the project down in a very public way while participants have a good perception of it rather than letting it die a slow death by the removal of its team. On the other hand, if you are trying to achieve a self-sustainable community, you might want to target indicators like average degree, average intensity of the interactions (weighted degree), average distance and rates of participation to the induced conversation, and try out management practices until you have established which ones affect your target indicators.

It’s trial and error, I know, but still a notch up the total steering by guts prevailing in this line of work. And it will get better, if we keep at it. Which is why I am involved in building Dragon Trainer.

See also: how online conversations scale. Forthcoming: another post on conversation diversity, all based on the same data as this.