Schrödinger’s love: navigating the uncertainties of early-stage polyamorous relationships

That of Schrödinger’s cat is one of the most famous thought experiments of all time. Austrian physicist Erwin Schrödinger proposed it in 1935, as a way to demonstrate the absurdity of the so-called Copenhagen interpretation of quantum mechanics. In case you are not familiar with it, the idea is this: a cat is locked in a sealed box, that contains one atom of a radioactive material, a Geiger counter and a flask of a poisonous gas. If the atom decays (a random event), the Geiger counter detects it, and releases the poison, killing the cat. The sealed box prevents us from seeing what happens. The Copenhagen interpretation implies that, as long as it remains sealed, the cat-box-poison system exists in a state in which the cat is simultaneously alive and dead. On opening the box, we make the system “choose” a state in which the cat is 100% alive or 100% dead.

I have often thought of professor Schrödinger’s notorious animal when in the early stages of a new relationship. I’m sure it’s happened to you, too: you meet someone new. You find yourself intrigued, then fascinated, then spellbound with her or him. She or he seems interested, as well. The first date went well. The second even better. And yet, you are not sure. You could be reading the signs all wrong – you barely know the person, after all. You could be deceiving yourself. Like the observer outside the sealed box containing the cat, you just don’t know. So, you are simultaneously the luckiest person in the world, looking forward to a new love, and a dumb bastard headed for a heartbreak. Schrödinger’s love.

This situation is not unique to polyamory. But I find that polyamory enhances it, for two reasons. The first: it is harder to predict the success or failure of a polyamorous relationship than that of a monogamous one. Monogamy is a norm: there are dos and do nots, and they tend to apply to a wide array of people and circumstances. Furthermore, the norm is common knowledge: it is conveyed by art, popular culture, religion, politics and so on. Polyamory is networked: everything two people might be to each other depends not only on them, but on each of them’s relationships with their other lovers, and in turn with these other lovers’ relationships with their own lovers, and so on, across the One Love Graph.

The second reason for the persistence of new polyamorous relationships in a Schrödinger’s love state is that, all other things being equal, polyamorists take longer to get a new relationship started. Nearly always, there are calendar constraints: you need to accommodate your new sweetheart without penalizing your incumbent partners, and he or she has exactly the same problem. Quite often, poly folks also have doubts, struggle with insecurity or with a judgmental environment: one or both of you might need some extra time and patience. Polyamorists aspire to loving several people at the same time, in full transparence and consent. This is ambitious: we are bold in our life strategy. But this very boldness requires us to be prudent in tactics: small, incremental changes, re-assuring everyone at every step we take.

For these reasons, the superposed both-alive-and-dead state of your new romance is likely to last a fairly long time. This can be difficult. As Schrödinger’s lover, you are elated and crushed, happy in love and miserable and abandoned, all at the same time. Trust me – I’ve been there, more than once.

Fortunately, polyamorists tend to be good communicators – we have to, or we are headed for trouble.  There are tools that we can deploy to open the damn box and make Schrödinger’s love alive or dead already: my favorite one is the S.T.A.R.S. talk. But they are tools, not magic wands. They work best when you need them least: when the minds of both you and your beloved(s) are clear and serene, and when you know yourselves well. No point insisting on a “clarifying talk” with someone who is still confused, scared, locked in a struggle with her or his feelings. You will clarify nothing, and alienate and scare further the person you are trying to bond with. And anyway, if you care for someone, forcing her or him to adjust to your own timetable is a lousy way to show it.

In the end, there is not much you can do, except trust your beloved(s), and accept to take things at the pace of the slowest, most confused person in the relationship. Mistakes will happen, and ambiguous messages will be sent that can have a hurtful interpretation: I find it helps to assume the other’s good faith rather than take offense. In fact, these small misunderstandings can help move things in the right direction, because you can quickly ask the other to clarify them. Every time an ambiguous communication gets resolved for the better, your mutual trust grows. For the same reason, I try to offer explanations for anything that I say that might sound ambiguous. There is a risk of overexplaining, but that is not as scary as the risk of unintentionally hurting someone you care for.

So: as a polyamorist exploring a new love, you should brace for a long Schrödinger’s love phase. You can’t avoid it, so try to enjoy/endure it. Polyamory is definitely not for the faint of heart. But we already knew that.

Image credit: Dhatfield – Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=4279886

Home, again

In 2019, I completed the process of acquiring Belgian nationality. I had started it the year before, in recognition of the fact that it looks like I am going to stay in my beloved Brussels for the long haul, and in an effort to insulate myself from any bad Brexit-like idea Italian politicians might have. It was no big deal: a bit of bureaucracy, a couple of hundred euro, and the Belgian administrative machine was in motion.

The months passed. And then a few weeks ago, I received a surprise invitation from the mayor of Forest (one of the 19 Brussels communes, the one where I live). He was delighted that some of its foreign residents – myself included – had recently acquired the Belgian nationality. Would I go out to the city hall for a moment of conviviality with him and his colleagues? I RVSP’ed sure, what a nice idea. And tonight, I went.

I was expecting a formality. A short and generic speech from some mayoral underling, followed by some kind of refreshment. I was wrong.

The whole political level of the city government was there. The mayor, and six of the nine échevins, in all their multi-ethnic glory. Nobody was in a rush. They went out of their way to explain that the city hall’s employees, and they personally, were there for the citizens, and that all doors were always open. When a lady reported problems with finding affordable housing, they all stepped up, explaining what each one’s office could do to attack her problem. Local government, at its best.

But it was the humanity of it all that stroke me the most. They seemed genuinely interested in talking to each one of us individually, and delighted that we had chosen Forest as our (permanent, given we had applied for citizenship) home. They even seemed to like us.

People liked them right back. Several new Belgians stood up to acknowledge the quality and humanity of the services they had received, as foreigners first, as Belgians now. One lady beaming, announced that she used to work black, but now her citizen status opens new opportunities. Everyone laughed, and the mayor smiled and said he was sorry she had to do that, and happy that now she was in the clear.

It turned out that Forest has 56,000 inhabitants representing 144 nationalities. In 2019 alone, about 500 residents, like me, acquired the Belgian nationality. These are incredible numbers, that expose the lies about the “migration emergency”, the “invasion”. Over half of Brussels residents were not born Belgian (source). And yet here we are, with our mayor welcoming us to the large, colorful, slightly shady Brussels family (yes, shady, since our cultural heroes are people like these – and proud of it!).

Way to go, my fellow Belgians. No, this country is not perfect. It can be quite dysfunctional. But these things are fixable. What matters most to me, is the ironic, tender humanity you so often manage to infuse in life here. If this is Belgium, I am happy to have chosen to make my home here, and proud to be one of you.

One Love: the missing paper on the network of romantic partnership in polyamory

Is polyamory a single, global web of love?

Polyamory is a relationship style where people engage in multiple, committed, romantic relationships at the same time. In the West, more and more people who practice it have been coming together in communities arranged roughly by country. A good resource for people who want to know more is Franklin Veaux’s website.

In this post, I do not talk about polyamory per se. Rather, I want to remark on the insights you can get if you think about it as a social network. Each polyamorous person is a node in the network. Nodes are connected by edges, encoding the romantic relationships across people. Now, in 1959, Paul Erdös and Alfred Rényi wrote a famous graph theory paper. Among other results, they proved that:

  • If you take a network consisting of a number of disconnected nodes;
  • And then start adding one link at a time, each edge connecting any two nodes picked at random, then;
  • When the number of links of the average node exceeds 1, a giant component emerges in the network. In a network, a component is a group of nodes that are all reachable from each other, directly or indirectly. A giant component is a component that consists of a large proportion of all nodes in the network. If a network has a giant component, most of its nodes are reachable from most other nodes.

Almost by definition the average polyamorists has more than one relationship. Granted, some people will only have one: maybe they are monogamous partners of a polyamorous person, or maybe they are still building their own constellation. Ther are even people who identify as polyamorous but are currently single. But there is also quite a high proportion of people with two or more partners. So, under most real-world conditions, the number of partners of the average person in the polyamory community is greater than one.

So, we have a mathematical theorem about random graphs and an educated guess about polyamory. When we put the two together, we obtain a sweeping hypothesis: most polyamorists in the world are connected to each other by a single web of love. Everyone is everyone else’s lover’s lover’s lover’s lover – six degrees of separation, but in romance. This would be an impressive macrostructure in society. Is it really there? There is a missing paper here. How to disprove the hypothesis and write it?

A statistical physics-ish approach

The hypothesis is quite precise, and in principle testable. But there are are substantial practical difficulties. You’d need unique identifiers for every poly person in the world, to make sure that Alice, Bob’s lover, is not the same person as Alice, Chris’s lover. Some people perceive a stigma around polyamory, and even many of those who don’t prefer to keep their relationship choices to themselves. So, the issues around research ethics, privacy and data protection are formidable.

So, maybe we can take a page out of the statistical physics playbook. The idea  of statistical physics is to infer a property of the whole system (in this case, the property is the existence of a giant component in the polyamory network) from statistical, rather than deterministic, information on the system’s components (in this case, the average number of partners per person). In our case, you could:

  1. Build computer simulations of polyamorous networks, and see if, for a realistic set of assumption, there is a value of the average number of relationships R that triggers a phase transition where a giant component emerges in the network.
  2. Run a simple survey (anonymous, sidestepping the ethics/privacy/data protection problems) to ask polyamorists how many relationship they have. Try also to validate assumptions underpinning your simulations.
  3. Compare the average number of relationships R’ as it results from the survey with the trigger value R as it results from the simulation. If R’>R, then most polyamorists are indeed connected to each other by a single web of love.

In the rest of this post, I am going to think aloud around step 1. At the very end I add a few considerations on step 2.

The model

Models are supposed to be abstract, not realistic. But the assumptions behind the Erdös-Rényi random graph model (start with disconnected nodes, add edges at random) are a bit too unrealistic for our case. I tried to build my own model starting from a different set of assumptions:

  • I assume that, as is often the case in real life, people move into polyamory by opening their previously monogamous relationships. So, I start from a set of couples, not of individuals. In network terms, this means starting with a network with N nodes, organized into N/2 separate components with 2 nodes each. N/2 is also the number of edges in the initial network.
  • At every time step, I add an edge between two random individuals that are not already connected. We ignore gender, and assume any person can fall in love with any other person.

Notice that, at time 0, all nodes of the network have one incident edge. In an Erdös-Rényi graph, we would already see a giant component, but this is not an Erdös-Rényi graph. In fact, we can think of it in a different way: we can redefine nodes as couples, rather than individuals. This way, we obtain a completely disconnected network with N/2 node. As we add edges in the original network of individuals, we now connect couples; and we are back into the Erdös-Rényi model, except with N/2 couples instead of N individuals. By the 1959 result, a giant component connecting most couples emerges when the average couple has over one incident edge: in other words, when there are N/4 inter-couple edges (since one edge always connects two couples, or, more precisely, two people in two different couples).

How many edges do individual people have on average at this point? There were N/2 intra-couple edges at the beginning; we then added N/4 inter-couple new ones. This means our network has now N x 3/4 edges. Each edge is incident to two individuals; so, the average individual has 1.5 incident edges.

Let us restate our result in polyamory terms.

Start from a number of monogamous couples. At each time period, add a new romantic relationship between two randomly chosen individuals that are not already in a relationship with each other. When the average number of relationships exceeds 1.5, a large share of individuals are connected to each other by an unbroken path of romantic relationships.

I have created a simple NetLogo model to illustrate the mechanics of my reasoning. You are welcome to play with it yourself. Starting from a population of 200 couples (and ignoring gender), and running it 100 times, I obtain the familiar phase transition, with the share of individuals in the largest component rising rapidly after the average number of partners per person crosses the 1.5 threshold. The vertical red line in the figure shows the threshold; the horizontal one is drawn at 0.5. Above that line, the majority of individuals are in the “one love” giant component. Notice also that, when the average number of partners reaches 2, about 80% of all polyamorists are part of the giant component.

Phase transition in size of the giant component as the average number of partners crosses the 1.5 line

Obtaining data

Now the question is: do polyamorous people actually have over 1.5 relationships on average? Like so many empirical questions, this one looks simple, but it is not. To answer it, you first have to define what “a relationship” is. Humans entertain a bewildering array of relationships, each one of which can imply, or not, romance (and how do you even define that?), sex, living together, parenting together, sharing finances and so on. They differ by duration, time spent together per week or per year, and so on. Coming up with a meaningful definition is not easy.

Supposing you do hammer out a definition, then you have to get yourself some serious data. Again, this is difficult. To quote the authors of the 2012 Loving More survey:

Truly randomized surveys […] are difficult, if not impossible, to obtain among hidden populations.

And, sure enough, I have been unable to find solid data about the average number of partners in polyamorous individuals.

The Loving More survey itself, for all its limitations, is one of the richest sources of empirical data on human behavior in polyamory: it involved over 4,000 Americans who self-identify as polyamorous. But the question “how many relationships do you have” was not asked. We do know that respondents reported an average of 4 sexual partners in the year previous to the survey. The exact same question is also asked in the (statistically legit) General Social Survey: there, a random sample of the U.S. population reported 3.5 sexual partners on average during the year previous to the survey. The difference is statistically significant, but it is not large, and anyway it only refers to recent sexual partners. Frankly, I have no idea how to infer values for the average number of romantic relationships from these numbers.

So, there is a significant empirical challenge here. But, if you solve it, you get to write the missing paper on polyamory, with the exciting conclusion that the “one love global network” exists, or not. I am looking forward to reading it!

Photo credit: unknown author from this site (Google says it’s labelled for reuse)